GENERALIZED FRACTIONAL INTEGRAL OPERATORS AND THEIR MODIFIED VERSIONS

HENDRA GUNAWAN

ABSTRACT. Associated to a function \(\rho : (0, \infty) \to (0, \infty) \), let \(T_\rho \) be the operator defined on a suitable function space by

\[
T_\rho f(x) := \int_{\mathbb{R}^n} \frac{\rho(|x - y|)}{|x - y|^n} f(y) \, dy,
\]
and \(\tilde{T}_\rho \) be the modified version of \(T_\rho \) given by

\[
\tilde{T}_\rho f(x) := \int_{\mathbb{R}^n} \left(\frac{\rho(|x - y|)}{|x - y|^n} - \frac{\rho(|y|)(1 - \chi_{B_0}(y))}{|y|^n} \right) f(y) \, dy.
\]

For \(\rho(t) = t^\alpha, \ 0 < \alpha < n \), the operator \(T_\rho \) is nothing but the fractional integral operator or the Riesz potential, which is known to be bounded from \(L^p(\mathbb{R}^n) \) to \(L^q(\mathbb{R}^n) \) provided that \(1/p - 1/q = \alpha/n \).

Next, for \(1 \leq p < \infty \) and a function \(\phi : (0, \infty) \to (0, \infty) \), we define the generalized Morrey space \(\mathcal{M}_\phi^p = \mathcal{M}_\phi^p(\mathbb{R}^n) \) by

\[
\mathcal{M}_\phi^p := \left\{ f \in L^p_{\text{loc}} : \sup_B \frac{1}{\phi(B)} \left(\frac{1}{|B|} \int_B |f(y)|^p \, dy \right)^{1/p} < \infty \right\}
\]
and the generalized Campanato space \(\mathcal{L}_\phi^p = \mathcal{L}_\phi^p(\mathbb{R}^n) \) by

\[
\mathcal{L}_\phi^p := \left\{ f \in L^p_{\text{loc}} : \sup_B \frac{1}{\phi(B)} \left(\frac{1}{|B|} \int_B |f(y) - f_B|^p \, dy \right)^{1/p} < \infty \right\},
\]
where the supremum is taken over all open balls \(B = B(a, r) \) in \(\mathbb{R}^n \), \(|B| \) denotes the Lebesgue measure of \(B \), \(\phi(B) = \phi(r) \), and \(f_B \) is the average of \(f \) over \(B \).

In this talk, we discuss the boundedness of \(T_\rho \) and \(\tilde{T}_\rho \) on generalized Morrey spaces and on generalized Campanato spaces, respectively. Under some conditions on \(\rho \), \(\phi \), and \(\psi \), we prove that \(T_\rho \) is bounded from \(\mathcal{M}_\phi^p \) to \(\mathcal{M}_\psi^q \), while \(\tilde{T}_\rho \) is bounded from \(\mathcal{L}_\phi^p \) to \(\mathcal{L}_\psi^q \) for \(1 < p < q < \infty \). Related results were proved earlier by E. Nakai [8]. Some of the results presented here is joint with Eridani and E. Nakai, and has been published recently in [4].

1. Introduction

For \(0 < \alpha < n \), the (classical) fractional integral operator or the Riesz potential \(I_\alpha \), defined by

\[
I_\alpha f(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x - y|^{n-\alpha}} \, dy,
\]

2000 Mathematics Subject Classification. 42B35, 26A33, 46E30, 42B20, 43A15.

Key words and phrases. Fractional integrals, Morrey spaces, Campanato spaces.
is known to be bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ provided that $1/p - 1/q = \alpha/n$, $1 < p < q < \infty$. The associated inequality

$$\|I_\alpha f\|_{L^q} \leq C_{p,q}\|f\|_{L^p}$$

is known as the Hardy-Littlewood-Sobolev inequality (see [12], p. 354).

Later, in [1, 10], it is shown that I_α extends to a bounded operator from the Morrey space $\mathcal{E}^{p,\beta}(\mathbb{R}^n)$ to $\mathcal{E}^{q,\gamma}(\mathbb{R}^n)$ where $1/p - 1/q = \alpha/n, -n/p \leq \beta < \alpha$. The Morrey space $\mathcal{E}^{p,\beta}(\mathbb{R}^n)$ is defined to be the set of all locally integrable functions f on \mathbb{R}^n for which

$$\sup_B \frac{1}{r^\beta} \left(\frac{1}{|B|} \int_B |f(y)|^p dy \right)^{1/p} < \infty,$$

where the supremum is taken over all balls $B = B(a, r)$ in \mathbb{R}^n and $|B|$ denotes the Lebesgue measure of B. The earlier result can be recovered from the latter by taking $\beta = -n/p$, because $\mathcal{E}^{p,\beta}(\mathbb{R}^n) = L^p(\mathbb{R}^n)$.

A further extension of the above result is obtained by E. Nakai [7], who showed that I_α is bounded from the generalized Morrey space $\mathcal{M}_{p,\phi}(\mathbb{R}^n)$ to $\mathcal{M}_{q,\psi}(\mathbb{R}^n)$ for $1/p - 1/q = \alpha/n, 1 < p < q < \infty$ and appropriate functions ϕ and ψ with $\psi(r) = r^\alpha \phi(r)$. Here the generalized Morrey space $\mathcal{M}_{p,\phi} = \mathcal{M}_{p,\phi}(\mathbb{R}^n)$ is defined by

$$\mathcal{M}_{p,\phi} := \{ f \in L^p_{\text{loc}}(\mathbb{R}^n) : \|f\|_{\mathcal{M}_{p,\phi}} < \infty \}$$

where

$$\|f\|_{\mathcal{M}_{p,\phi}} := \sup_B \phi(r) \left(\frac{1}{|B|} \int_B |f(y)|^p dy \right)^{1/p}.$$

Now the classical result can be recovered from Nakai’s by taking $\phi(r) = r^{-n/p}$.

In this note, we shall discuss the generalized fractional integral operator T_ρ, defined for a suitable function $\rho : (0, \infty) \to (0, \infty)$ by

$$T_\rho f(x) := \int_{\mathbb{R}^n} \rho(|x - y|) \frac{f(y)}{|x - y|^n} dy,$$

whenever this integral makes sense. In particular, we are interested in the boundedness of T_ρ from the generalized Morrey space $\mathcal{M}_{p,\phi}$ to $\mathcal{M}_{q,\psi}$. Note that for $\rho(t) = t^\alpha, 0 < \alpha < n$, we have $T_\rho = I_\alpha$ — the fractional integral operator mentioned earlier.
Next, we shall also present some results for a modified version T_ρ, denoted by \tilde{T}_ρ, which is defined by the formula

$$\tilde{T}_\rho f(x) := \int_{\mathbb{R}^n} f(y) \left(\frac{\rho(|x-y|)}{|x-y|^n} - \frac{\rho(|y|)(1 - \chi_{B_0}(y))}{|y|^n} \right) dy,$$

where B_0 is the unit ball around the origin and χ_{B_0} is the characteristic function of B_0. For $\rho(t) = t^\alpha$, the operator $\tilde{T}_\rho = \tilde{I}_\alpha$ is well-defined for $0 < \alpha < n+1$, and is known to be bounded from L^p to BMO when $p > 1$ and $\alpha = n/p$, from L^p to Lip_β when $p > 1$ and $0 < \alpha - n/p = \beta < 1$, from BMO to Lip_α when $0 < \alpha < 1$, and from Lip_β to Lip_γ when $0 < \alpha + \beta = \gamma < 1$ (see [8] and further references therein). Our interest here will be the boundedness of \tilde{T}_ρ from the generalized Campanato space $\mathcal{L}_{p,\phi}$ to $\mathcal{L}_{q,\psi}$. The space $\mathcal{L}_{p,\phi} = \mathcal{L}_{p,\phi}(\mathbb{R}^n)$ is defined to be the set of all functions $f \in L^p_{\text{loc}}(\mathbb{R}^n)$ for which

$$\|f\|_{\mathcal{L}_{p,\phi}} := \sup_B \frac{1}{\phi(r)} \left(\frac{1}{|B|} \int_B |f(y) - f_B|^p dy \right)^{1/p} < \infty,$$

where f_B denotes the average of f over B, that is, $f_B := \frac{1}{|B|} \int_B f(y) dy$.

Note that for the space $\mathcal{M}_{p,\phi}$, the function $\phi(r)$ is usually required to be nonincreasing and $r^n \phi^p(r)$ to be nondecreasing, while for the space $\mathcal{L}_{p,\phi}$, it is $\frac{\phi(r)}{r}$ that is required to be nonincreasing.

The generalized fractional integral operator T_ρ and its modified version \tilde{T}_ρ were first studied by Nakai [8]. Some extensions of Nakai’s results were obtained by Eridani [2], Eridani and Gunawan [3], Gunawan [5], and Eridani, Gunawan, and Nakai [4]. Related results may also be found in Kurata et al. [6]. Results presented here are summarized from [4, 5].

Throughout this note, C, C_1, C_p and $C_{p,q}$ will denote positive constants, which may vary from line to line.

2. Preliminaries

In the definition of T_ρ, we assume that the function ρ satisfies the following conditions:

\begin{align*}
(2.1) & \quad \int_0^1 \frac{\rho(t)}{t} dt < \infty; \\
(2.2) & \quad \frac{1}{2} \leq \frac{\rho}{\rho(s)} \leq 2 \Rightarrow \frac{1}{C_1} \leq \frac{\rho(s)}{\rho(t)} \leq C_1.
\end{align*}
Meanwhile, in the definition of \tilde{T}_ρ, we assume that ρ satisfies (2.1) and (2.2) and the following two additional conditions:

(2.3) $\int_r^\infty \frac{\rho(t)}{t^2} \, dt \leq C_2 \frac{\rho(r)}{r}$ for all $r > 0$;
(2.4) $\frac{1}{2} \leq \frac{r}{s} \leq 2 \Rightarrow |\rho(s) - \frac{\rho(s)}{s}\rho(s)| \leq C_3 |r - s| \frac{\rho(s)}{s}.$

For example, the function $\rho(t) = t^\alpha$, $0 < \alpha < n$, satisfies (2.1), (2.2) and (2.4). If $0 < \alpha < 1$, then $\rho(t) = t^\alpha$ also satisfies (2.3).

A function ρ satisfying (2.2) is said to satisfy the doubling condition (with a doubling constant C_1). If ρ satisfies the doubling condition, then one may observe that

$$\int_{2^k r}^{2^{k+1} r} \frac{\rho(t)}{t} \, dt \sim \rho(2^k r)$$

for every integer k and $r > 0$. Further, it follows from the doubling condition that

$$\rho(r) \leq C \int_0^r \frac{\rho(t)}{t} \, dt,$$

for every $r > 0$. Next, if ρ satisfies (2.1)-(2.4), then we have

$$\int_{\mathbb{R}^n} \left(\frac{\rho(|x_1 - y|)}{|x_1 - y|^n} - \frac{\rho(|x_2 - y|)}{|x_2 - y|^n} \right) \, dy = 0$$

for every choice of x_1 and x_2 (see [8]). For such a function ρ, we see that the operator \tilde{T}_ρ maps a constant to a constant, and so \tilde{T}_ρ is well-defined from one generalized Campanato space to another.

In the next section, we shall involve the so-called Hardy-Littlewood maximal operator M, which is defined by

$$Mf(x) := \sup_{B \ni x} \frac{1}{|B|} \int_B |f(y)| \, dy.$$

A classical result for M is that it is bounded on L^p for $1 < p \leq \infty$ (see e.g. [12]). In [7], Nakai showed that if ϕ satisfies the doubling condition and

(2.5) $\int_r^\infty \frac{\phi(t)}{t} \, dt \leq C \phi(r)$ for all $r > 0$,

for some $1 < p < \infty$, then there exists $C_p > 0$ such that

$$\|Mf\|_{\mathcal{M}_{p,\phi}} \leq C_p \|f\|_{\mathcal{M}_{p,\phi}},$$

that is, M is bounded on $\mathcal{M}_{p,\phi}$.
In our approach, we shall also involve Young functions and Orlicz spaces. A function \(\Phi : [0, \infty] \to [0, \infty] \) is called a Young function if \(\Phi \) is convex, \(\lim_{r \to 0^+} \Phi(r) = \Phi(0) = 0 \) and \(\lim_{r \to \infty} \Phi(r) = \Phi(\infty) = \infty \). Note that a Young function is always nondecreasing. Given a Young function \(\Phi \), we define \(\Phi^{-1}(r) = \inf \{ s : \Phi(s) > r \} \) (with \(\inf \emptyset = \infty \)). If \(\Phi \) is continuous and bijective, then \(\Phi^{-1} \) is nothing but the usual inverse function.

If a Young function \(\Phi \) satisfies
\[
0 < \Phi(r) < \infty \text{ for } 0 < r < \infty,
\]
then \(\Phi \) is continuous and bijective from \([0, \infty)\) to itself. In this case, the inverse function \(\Phi^{-1} \) is increasing, continuous and concave, and hence satisfies the doubling condition.

For a Young function \(\Phi \), we define the Orlicz space \(L^\Phi = L^\Phi(\mathbb{R}^n) \) to be the set of all locally integrable function \(f \) on \(\mathbb{R}^n \) for which
\[
\int_{\mathbb{R}^n} \Phi\left(\frac{|f(x)|}{\epsilon} \right) dx < \infty
\]
for some \(\epsilon > 0 \). Here \(L^\Phi \) is equipped with the norm
\[
\|f\|_{L^\Phi} := \inf \left\{ \epsilon > 0 : \int_{\mathbb{R}^n} \Phi\left(\frac{|f(x)|}{\epsilon} \right) dx \leq 1 \right\}.
\]
Note that for \(\Phi(r) = r^p, 1 \leq p < \infty \), we have \(L^\Phi = L^p \). For further properties of Young functions and Orlicz spaces, see e.g. [11]. For their relevance with our subject, see [8, 9].

3. The boundedness of \(T_\rho \)

In [9], Nakai proved that \(T_\rho \) is bounded from \(M_{1,\phi} \) to \(M_{1,\psi} \), under appropriate conditions on \(\phi \) and \(\psi \), particularly the assumption that
\[
\phi(r) \int_0^r \frac{\rho(t)}{t} dt + \int_r^\infty \frac{\rho(t)\phi(t)}{t} dt \leq C\psi(r), \quad \text{for all } r > 0.
\]
Later, Eridani [2] showed that \(T_\rho \) is bounded from \(M_{p,\phi} \) to \(M_{p,\psi} \) for \(1 < p < \infty \), under similar assumptions on \(\rho, \phi \) and \(\psi \). Note, however, that we cannot recover the known results for \(I_\alpha \) from these results.
Recently, Eridani and Gunawan [3] proved that I_ρ is bounded from $M_{p,\phi}$ to $M_{p,\phi^{p/q}}$ for $1 < p < q < \infty$, under some assumptions on ρ and ϕ. Precisely, they proved the following theorem.

Theorem 3.1 [3]. Suppose that ρ is surjective and satisfies the doubling condition. Suppose also that ϕ satisfies the doubling condition, (2.5), and

$$
\int_0^r \frac{\rho(t)}{t} dt + \rho(r)^{q/(q-p)} \int_r^\infty \frac{\rho(t)\phi(t)}{t} dt \leq C_\rho(r), \quad \text{for all } r > 0.
$$

Then there exists $C_{p,q} > 0$ such that

$$
\|T_\rho f\|_{M_{q,\phi^{p/q}}} \leq C_{p,q} \|f\|_{M_{p,\phi}}
$$

that is, T_ρ is bounded from $M_{p,\phi}$ to $M_{q,\phi^{p/q}}$, for $1 < p < q < \infty$.

Although Theorem 3.1 generalizes the result for I_α, the assumptions on ρ and ϕ seem to be different from those made by Nakai [9]. The following theorem serves as a link between Eridani and Gunawan’s and Nakai’s results.

Theorem 3.2 [5]. Suppose that ρ and ϕ satisfies the doubling condition. Suppose also that ϕ is surjective, satisfies (2.5) and

$$
\phi(r) \int_0^r \frac{\rho(t)}{t} dt + \int_r^\infty \frac{\rho(t)\phi(t)}{t} dt \leq C_\phi(r)^{p/q}, \quad \text{for all } r > 0.
$$

Then there exists $C_{p,q} > 0$ such that

$$
\|T_\rho f\|_{M_{q,\phi^{p/q}}} \leq C_{p,q} \|f\|_{M_{p,\phi}}
$$

that is, T_ρ is bounded from $M_{p,\phi}$ to $M_{q,\phi^{p/q}}$, for $1 < p < q < \infty$.

Proof [5]. For every $x \in \mathbb{R}^n$ and $R > 0$, we write

$$
T_\rho f(x) = \int_{|x-y|<R} \frac{\rho(|x-y|)}{|x-y|^n} f(y) dy + \int_{|x-y|\geq R} \frac{\rho(|x-y|)}{|x-y|^n} f(y) dy = I_1(x) + I_2(x).
$$
For $I_1(x)$, we have

\[
|I_1(x)| \leq \int_{|x-y|<R} \frac{\rho(|x-y|)}{|x-y|^n} |f(y)| \, dy
\]

\[
\leq \sum_{k=-\infty}^{1} \int_{2^{k}R \leq |x-y|<2^{k+1}R} \frac{\rho(|x-y|)}{|x-y|^n} |f(y)| \, dy
\]

\[
\leq C \sum_{k=-\infty}^{1} \frac{\rho(2^k R)}{(2^k R)^n} \int_{|x-y|<2^{k+1}R} |f(y)| \, dy
\]

\[
\leq C Mf(x) \sum_{k=-\infty}^{1} \rho(2^k R)
\]

\[
\leq C Mf(x) \sum_{k=-\infty}^{1} \int_{2^{k}R}^{2^{k+1}R} \frac{\rho(t)}{t} \, dt
\]

\[
= C Mf(x) \int_{0}^{R} \frac{\rho(t)}{t} \, dt
\]

\[
\leq C Mf(x) \phi(R)^{(p-q)/q}.
\]

Meanwhile, for $I_2(x)$, we have

\[
|I_2(x)| \leq \int_{|x-y| \geq R} \frac{\rho(|x-y|)}{|x-y|^n} |f(y)| \, dy
\]

\[
\leq \sum_{k=0}^{\infty} \int_{2^{k}R \leq |x-y|<2^{k+1}R} \frac{\rho(|x-y|)}{|x-y|^n} |f(y)| \, dy
\]

\[
\leq C \sum_{k=0}^{\infty} \frac{\rho(2^k R)}{(2^k R)^n} \int_{|x-y|<2^{k+1}R} |f(y)| \, dy
\]

\[
\leq C \sum_{k=0}^{\infty} \frac{\rho(2^k R)}{(2^k R)^n} \left(\int_{|x-y|<2^{k+1}R} |f(y)|^p \, dy \right)^{1/p}
\]

\[
\leq C \|f\|_{M_{p,q}} \phi \sum_{k=0}^{\infty} \rho(2^{k+1}R) \phi(2^{k+1}R)
\]

\[
\leq C \|f\|_{M_{p,q}} \phi \sum_{k=0}^{\infty} \int_{2^{k}R}^{2^{k+1}R} \frac{\rho(t)\phi(t)}{t} \, dt
\]

\[
= C \|f\|_{M_{p,q}} \int_{R}^{\infty} \frac{\rho(t)\phi(t)}{t} \, dt
\]

\[
\leq C \|f\|_{M_{p,q}} \phi(R)^{p/q}.
\]
Summing the two estimates for I_1 and I_2, we get

$$|T_\rho f(x)| \leq C [Mf(x) \phi(R)^{(p-q)/q} + \|f\|_{M_{p,\phi}} \phi(R)^{p/q}].$$

Since ϕ is surjective, we can choose $R > 0$ such that $\phi(R) = Mf(x).\|f\|^{-1}_{M_{p,\phi}}$, assuming that f is not identically 0 and that Mf is finite everywhere. Hence, for every $x \in \mathbb{R}^n$, we have

$$|T_\rho f(x)|^q \leq C Mf(x)^p \|f\|^{q-p}_{M_{p,\phi}}.$$

From this and the boundedness of the maximal operator M on $M_{p,\phi}$, we obtain the desired inequality. (QED)

The next theorem is another generalization of the known results for I_α (see [4] for its proof).

Theorem 3.3 [4] Suppose that ρ satisfies (2.1) and (2.2). Suppose further that $\frac{\rho(r)}{r^\alpha}$ and $r^{-n/p} \int_0^r \frac{\rho(t)}{t} dt$ are almost decreasing, $\int_r^\infty \frac{\rho(t)t^{-n/p}}{t} dt \leq C r^{-n/p} \int_0^r \frac{\rho(t)}{t} dt$, and there exist Young functions Φ_1 satisfying (2.6) and Φ_2 such that

$$r^{-n/p} \int_0^r \frac{\rho(t)}{t} dt \sim \Phi_1^{-1}(r^{-n}) \quad \text{and} \quad \Phi_1^{-1}(r^{-n}) \Phi_2^{-1}(r^{-n}) \sim r^{-n/q}$$

for $1 < p \leq q < \infty$. If ϕ satisfies the doubling condition and

$$\phi(r) \int_0^r \frac{\rho(t)}{t} dt + \int_r^\infty \frac{\rho(t)\phi(t)}{t} dt \leq C \psi(r), \quad \text{for all } r > 0,$$

then T_ρ is bounded from $M_{p,\phi}$ to $M_{q,\psi}$.

Note. A function $\theta : \mathbb{R}^+ \to \mathbb{R}^+$ is said to be almost decreasing if there exists a constant $C > 0$ such that $\theta(r) \geq C \theta(s)$ for $r \leq s$.

4. **The boundedness of T_ρ on Campanato spaces**

We now turn to the modified fractional integral operator \tilde{T}_ρ. In [8, 9], Nakai proved that \tilde{T}_ρ is bounded from $\mathcal{L}_{1,\phi}$ to $\mathcal{L}_{1,\psi}$ for appropriate functions ϕ and ψ. For $\phi(r) = r^\beta$ with $0 \leq \beta \leq 1$, the space $\mathcal{L}_{1,\phi}$ reduces to BMO (when $\beta = 0$) or Lip$_\beta$ (when $0 < \beta \leq 1$). In this case, Nakai’s result covers the BMO–Lip$_\alpha$ and Lip$_\beta$–Lip$_\gamma$ results for \tilde{I}_α. For $\phi(r) = r^\beta$ with $-n/p \leq \beta < 0$, $1 < p < \infty$, we have Eridani’s result
[2] which covers the other results for \(\widetilde{I}_\alpha \). The following theorem is an extension of Eridani’s (see [4] for its proof).

Theorem 4.1 [4] Suppose that \(\rho \) satisfies (2.1)–(2.4), and that \(\phi \) satisfies the doubling condition and \(\int_1^\infty \frac{\phi(t)}{t} \, dt < \infty \). If

\[
\int_r^\infty \frac{\phi(t)}{t} \, dt \int_0^r \frac{\rho(t)}{t} \, dt + r \int_r^\infty \frac{\rho(t)\phi(t)}{t^2} \, dt \leq C\psi(r) \quad \text{for all } r > 0,
\]

then \(\widetilde{T}_\rho \) is bounded from \(L^p,\phi \) to \(L^p,\psi \) for \(1 < p < \infty \).

The results for \(T_\rho \) indicate that the modified fractional integral operator \(\widetilde{T}_\rho \) must also be bounded from \(L^p,\phi \) to \(L^q,\psi \) for \(1 < p \leq q < \infty \) and appropriate functions \(\phi \) and \(\psi \). Indeed, we have the following analog of Theorem 3.3 for \(\widetilde{T}_\rho \).

Theorem 4.2 [4] Suppose that \(\rho \) satisfies (2.1) – (2.4). Suppose further that \(\rho(r) = r^{\alpha} l(r)^\beta \), where \(\alpha = n/p - n/q \), \(\beta > 0 \), and \(l(r) = -1/\log r \) for small \(r \) and \(l(r) = \log r \) for large \(r \), so that \(\rho \) satisfies the

5. **Concluding remarks**

Through our work we have been able to extend the known results for the classical fractional integral operator \(I_\alpha \) and its modified version \(\widetilde{I}_\alpha \) to the boundedness of \(T_\rho \) on Morrey spaces and that of \(\widetilde{T}_\rho \) on Campanato spaces. Our results not only cover the known results for \(I_\alpha \), but also enrich the class of functions of \(\rho, \phi \) and \(\psi \) for which the operator \(T_\rho \) is bounded from the Morrey space \(M_{p,\phi} \) to \(M_{q,\psi} \), and the operator \(\widetilde{T}_\rho \) is bounded from the Campanato space \(\mathcal{L}_{p,\phi} \) to \(\mathcal{L}_{q,\psi} \).

To give an example, let \(1 < p < q < \infty \). Take \(\rho(r) = r^{\alpha} l(r)^\beta \), where \(\alpha = n/p - n/q \), \(\beta > 0 \), and \(l(r) = -1/\log r \) for small \(r \) and \(l(r) = \log r \) for large \(r \), so that \(\rho \) satisfies the
doubling condition. Then \(\int_0^r \frac{\omega(t)}{t} \, dt \sim \rho(r) \) (see [8]). Now take \(\phi(r) = r^{-n/p} l(r)^{\beta q/(p-q)} \). Then \(\phi(r)^{(p-q)/q} = \rho(r) \), and one may check that \(\rho \) and \(\phi \) satisfy the assumptions in Theorem 3.2. Hence the associated operator \(T_\rho \) is bounded from \(M_{p,\phi} \) to \(M_{q,\phi^{p/q}} \).

Further examples that support our results can be found in [4].

REFERENCES

Department of Mathematics, Bandung Institute of Technology, Bandung 40132, Indonesia.

E-mail address: hgunawan@dns.math.itb.ac.id