1. Let A be an $n \times n$ matrix and let $f(x)$ be a polynomial such that $f(A) = 0$. Prove that $f(x)$ is a multiple of the minimal polynomial of A.

2. Let A and B be two $n \times n$ matrices over \mathbb{C}. Prove that if $AB = BA$, then there exists a basis B such that both $[A]_B$ and $[B]_B$ are upper triangular.

3. Let A and B be two $n \times n$ matrices over \mathbb{C}. Suppose that A and B are similar to each other over \mathbb{C}. Determine whether A and B are similar to each other in \mathbb{R}. Justify your answer.

4. Let A be a 2×2 matrix over \mathbb{Z} with characteristic polynomial $x^2 + 1$. Determine whether A is similar to \[
\begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}
\] over \mathbb{Z}. Justify your answer.

5. Find the Jordan canonical forms of all 9×9 matrices over \mathbb{C} with minimal polynomial $x^2(x - 3)^3$.

6. Let A be an $n \times n$ matrix over \mathbb{C}. Prove that A is diagonalizable if and only if the minimal polynomial of A is a product of distinct linear factors.

7. Let A and B be two $n \times n$ matrices. Prove that AB and BA have the same eigenvalues.

8. Find the Jordan canonical form of \[
\begin{pmatrix}
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0
\end{pmatrix}.
\]
9. Let V be a finite-dimensional inner product space and let W be a subspace of V. Prove that $(W^\perp)^\perp = W$.

10. Let V be a finite-dimensional inner product space over \mathbb{C} and let G be the set of all linear transformations T such that

$$(Tv_1|Tv_2) = (v_1|v_2).$$

Prove that G forms a group.

11. Let T, A and B be linear transformations of a finite-dimensional inner product space V. Suppose that

$$(Tv|w) = (v|Aw) = (v|Bw)$$

for all $v, w \in V$. Prove that $A = B$.

12. Consider \mathbb{R}^2 with the standard inner product space. Determine the set of all linear transformations T such that

$$(Tv|Tw) = (v|w)$$

for all $v, w \in \mathbb{R}^2$. Justify your answer.

13. Consider \mathbb{R}^4 with the standard inner product space. Determine the orthogonal complement of $\{(1,1,1,1), (1,0,0,1)\}$.

14. Prove that every finite-dimensional inner product space has an orthonormal basis.

15. Let A be an $n \times n$ matrix over \mathbb{R}. Prove that A is a sum of two nonsingular matrices.

16. Let A and B be two $n \times n$ matrices over \mathbb{C}. Prove that $I - AB$ and $I - BA$ have the same determinant.

17. Let A and B be two $n \times n$ matrices over \mathbb{C}. Suppose that A and B have the same minimal and characteristic polynomials. Determine whether A and B are similar over \mathbb{C}.

18. Let A be a 3×3 matrix over \mathbb{C}. Prove that A and the transpose of A are similar over \mathbb{C}.

2
19. Let A and B be two 2×2 matrices over \mathbb{Z}. Suppose that $x^2 + x + 1$ is the characteristic polynomial for both A and B. Determine whether A and B are similar to each other over \mathbb{Z}. Justify your answer.

20. Find two matrices A and B over \mathbb{C} such that
 (i) A and B are similar to each other in \mathbb{C},
 (ii) A and B are not similar to each other in \mathbb{R}.