INSTRUCTIONS TO CANDIDATES

1. This paper contains a total of EIGHT (8) questions and comprises FOUR (4) printed pages.

2. Attempt all questions.

3. Non-programmable scientific calculators may be used. However, candidates should lay out systematically the various steps in the calculations.
Question 1 [10 marks]
Express in partial fractions
\[\frac{x + 5}{(x^2 + 1)(3 - 2x)}. \]
Hence, find the exact value of
\[\int_0^1 \frac{x + 5}{(x^2 + 1)(3 - 2x)} \, dx. \]

Question 2 [10 marks]
Prove by induction that
\[\sum_{r=0}^{n-1} \cos(a + 2r\beta) = \frac{\cos(a + (n-1)\beta)\sin n\beta}{\sin \beta} \]
where \(\sin \beta \neq 0\)
Deduce that
\[\cos \theta + \cos 5\theta + \cos 9\theta + \cos 13\theta = \frac{\cos 7\theta \sin 8\theta}{\sin 2\theta}, \]
where \(\sin 2\theta \neq 0\).

Question 3 [10 marks]
The parametric equations of a curve are \(x = a(t + t^2)\) and \(y = a(1 + t\ln t)\), where \(a\) is a constant and \(t > 0\).
(i) Find the equation of the normal to the curve at the point where \(t = 1\).
(ii) Obtain and simplify an expression for \(\frac{d^2 y}{dx^2}\).

Question 4 [10 marks]
The function \(f\) is defined by
\[f(x) = \frac{1}{6}x^3 - \frac{36}{x}, \quad x > 0. \]
(i) Show that the function \(f\) has an inverse.
(ii) The graphs of \(f\) and its inverse meet at the point A. Find the coordinates of A.
Question 5 [10 marks]

Express the complex number \(z = \frac{(1 - \sqrt{3}i)^4}{(1 + i)^2} \) in the form \(r(\cos \theta + i \sin \theta) \), where \(r > 0 \) and \(-\pi < \theta \leq \pi \).

On an Argand diagram, the point P represents the complex number \(z \) and the point Q represents the complex number \(w \). Given that triangle OPQ oriented in the clockwise sense is equilateral, find the modulus and argument of \(w \).

Question 6 [15 marks]

(a) Show that \(\frac{d}{dx} \left\{ \ln\left(x + \sqrt{x^2 + 1}\right) + x\sqrt{x^2 + 1} \right\} = 2\sqrt{x^2 + 1} \).

Hence, find \(\int \frac{(x+1)^2}{\sqrt{x^2 + 1}} \, dx \).

(b) Evaluate \(\int \frac{(x+1)}{e^{x^2}} \, dx \).

Question 7 [15 marks]

For this question, give your answer to three significant figures where appropriate.

(a) If \(\cos 2x, \sin 4x, \cos 6x \) are successive terms of an arithmetic progression and \(-\frac{\pi}{2} < x < \frac{\pi}{2} \), find all possible values of \(x \).

(b) If \(\sqrt{6 - 2^y}, 4^y, \sqrt{6 + 2^y} \) are successive terms of a geometric progression, find all possible values of \(y \).
Question 8 [20 marks]

The curve C has equation

\[y = \left| \frac{x - 9}{x} \right|, \quad x \neq 0. \]

(i) Find the coordinates of the points where the curve meets the \(x \)-axis.

(ii) Show that the curve has no stationary points.

(iii) Sketch the curve C.

(iv) Find the range of values of \(x \) for which the curve lies above the line \(y = 8 \).

(v) Let \(R \) be the region in the first quadrant bounded by the curve C and the line \(y = 8 \). Calculate the exact volume of the solid formed when the region \(R \) is rotated completely about the \(x \)-axis.