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The milestones in the history of  kinetic equations
C. J. Maxwell introduced a velocity distribution function of molecules to compute the bulk 
viscosity and heat conductivity for gas consistent of hard sphere molecules in 1860, and he 
showed that the bulk viscosity and heat conductivity are independent of gas density but they 
depend on the square root of the thermal temperature.   In 1872 L.  Boltzmann introduced 
the Boltzmann equation, whose dependent variable is a  velocity distribution function of gas 
molecules, to show the H-theorem which asserts the third law of thermal dynamics, (entropy 
of a closed system is a monotone increasing function with respect to time), directly from mat-
ters and motions.

An experiment by W. Crookes
The industry technology in the era of Queen Victoria was advanced 
enough to create a highly rarefied environment.  In 1873 W. Crookes 
invented a device which was called the radiometer to verify the Max-
well equations on electromagnetism. At a first glance of the outcome,   
the device seemed to behave   in a way as the Maxwell equations 
predicted.    However, after a closer look at the experiment outcome, 
the device rotated in an opposite direction, which contradicts to the 
Maxwell equations prediction.     Maxwell made many attempts to 
explain this anomaly by the conventional fluid mechanics such as the 
compressible Navier-Stokes equation or compressible Euler Equa-
tion, but none of the theories  could explain it perfectly.  Not until 
Maxwell received the hint from the Reynolds’ attempt to explain the 
anomaly based on a kinetic equation together with a porous media 

assumption on the vane of the radiometer in 1879 he did successfully explain the anomaly, 
which is called the temperature gradient  flow, is generic for highly rarefied gas modeled by 
the Boltzmann equation with a non-small mean free path.  

Interests on the rarefied gas in modern times
The development of the space program and star war program in the cold war period raised 
the topics of rarefied gas as one of the major interests in developing spaceship technology to 
re-enter the upper layer of the atmosphere and to launch an inter-continental ballistic missile. 
Those programs encountered a regime where all the traditional theories of the fluid mechan-
ics are not valid. As the industry technology advanced, the needs for the rarefied gas theory 
increased. For example, the electron flows in a micro device can be viewed as rarefied gas 
flows since the mean free paths are not small. Another example is that, in the production 
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process of semiconductor devices 
one needs to require a near vacuum 
environment for the high level of in-
dustrial precision.  The Boltzmann 
equation is one of the most used 
model for the industrial simulation, 
since the Boltzmann equation is the 
classical mathematical model for the 
rarefied gas. The industry technol-
ogy advancement motivates the re-
search on the Boltzmann equation 
as well as its mathematical analysis 
in the past few decades.   

Mathematical
development
In the sixth of the Hilbert’s 21 prob-
lems addressed to the International 
Congress of Mathematicians 1900, 
Hilbert explicitly mentioned the va-
lidity of the Boltzmann equation and 
its connections to fluid dynamics. 
Later in 1906, Poincare challenged 
mathematicians to make sense of 
kinetic theory, and in 1912 Hilbert 
used integral operator theory to de-
rive a formal expansion theory to 
obtain the compressible Euler equa-
tion. In 1917 the Chapman-Enskog 
expansion was derived to obtain the 
compressible Navier-Stokes equa-
tion from the Boltzmann equation, 
and in 1962 H. Grad developed a 
general asymptotic theory for the 
Boltzmann equation. He proposed 
to include three singular slips, “initial 
slips, boundary slips, shock slips”, in 
the asymptotic theory. Along with the 
Grad’s proposal, Sone developed 
the generalized asymptotic theory 
for boundary value problems, con-
densation-vaporization problems, 
etc. Sone, Aoki, and their cowork-
ers in the Engineering School of the 
Kyoto University obtained a series of 
high quality asymptotic theories on 
the temperature gradient flows, con-
densation-vaporization problem, the 
ghost effect, etc.  Their theories pro-
vide good physical understandings 
of the rarefied gas. With the sharp 
knowledge, see [3,4], Sone and Sug-
imoto invented an ingenious device 
awarded by the Japanese Vacuum 
Society 2007: a vacuum pump with-
out any moving parts:

Quantitative-Qualitative analysis on the Boltzmann equation
The high quality asymptotic analysis developed by the Sone’s group moti-
vated mathematicians to pursue the Boltzmann equation in a classical fash-
ion, i.e. to give a constructive, global, pointwise detailed description of the 
solution and the coupling of the nonlinear waves. This leads to the consid-
eration of the Green’s function for a linearized Boltzmann equation around a 
thermal-equilibrium state, [1] in which a mathematical mixing phenomenon 
was discovered: The microscopic regularity can be converted into the macro-
scopic regularity by mixing information from different locations and different 
velocities.  With this device one can effectively decompose solutions into two 
dual components: particle-like component and fluid-like components, and 
this gives two-time scale structures in the solutions, and provides a precise 
structure of the Green’s function. With the sharper estimates on the Green’s 
function one can obtain the detailed global solution of the full Boltzmann 
equation for a class of  small perturbations around a thermal-equilibrium 
state. With this Green’s function as a basic instrument, the Green’s function 
for an initial-boundary value problem was constructed to study the stability of 
a thermal-equilibrium state for a half-space problem in [2]. More recently with 
the Green’s function as a basic instrument,  the nonlinear invariant manifolds 
for stationary Boltzmann flows were established to yield a series of new theo-
rems on the Boltzmann equation. 

Conclusion
The classical mathematical analysis for the Boltzmann equation provides not 
only the essence of the rarefied gas physics but also a powerful analytical 
tool. It shall receive further studies and shall devise an effective numerical 
method to enhance the industry technology advancement, and eventually 
help mathematics to develop further deep theories
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