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that lie on the circle and take only the 
ones inside it. Given points P and Q in 
our space, the "line through P and Q" 
is interpreted as the arc of the circle 
through P and Q that intersects C at 
right angles (see Figure 1). With these 
interpretations of the words "point" 
and "line", it can be shown that the fifth 
postulate fails because given a line L 
and point p outside L, there will be more 
than one line passing through p that 
does not intersect L, while Euclid’s other 
axioms all remain valid.

At this point, you may object that when 
Euclid set down his axioms he had in 
mind a certain meaning for the words 
"point" and "line", and this is not what he 
meant. To be sure, Euclid did not have 
the Poincaré Disk in mind. However, 
the words "point" and "line" occur as 
primitive undefined terms in Euclid’s 
axioms, and if all you have told me about 
points and lines are Euclid’s first four 
axioms, then I am free to interpret these 
terms any way I want, as long as the four 
things you have told me about them 
come out true under my interpretation. 

Academic Profiles:
Dr Raghavan received his Ph.D. at the 
University of Wisconsin-Madison in May 
2008. His advisors were Prof Kenneth 
Kunen and Dr Bart Kastermans. He was a 
postdoctoral fellow at the University of 
Toronto from July 2008 to July 2011. In 
2011, he was awarded a JSPS postdoctoral 
fellowship and was a JSPS fellow at Kobe 
University from July 2011 to August 2012. 
He joined the Department of Mathematics, 
NUS in August 2012.

Research Interests:
•	 Mathematical Logic
•	 Set Theory
•	 General Topology

Contacts Details:
S17-07-15
Department of Mathematics
National University of Singapore
Block S17, 10, Lower Kent Ridge Road
Singapore 119076 

Telephone	:	(+65) 6516-1174
Email	 :	raghavan@math.nus.edu.sg 
Webpage	 :	http://www.math.toronto.edu/

raghavan

Dr Dilip Raghavan
Department of Mathematics

Dr Dilip Raghavan

Introduction

athematicians prove theorems. 
But what does it mean to prove 

a theorem? The way it is commonly 
understood in Mathematics, it means 
to deduce a proposition expressed in a 
certain language from a set of axioms 
using a fixed collection of inference rules. 
This has been the ideal of Mathematics 
at least since the time of Euclid, though 
it was not always expressed in these 
terms. This formulation immediately 
raises the issue of how a proposition is 
recognized as an axiom. Traditionally 
axioms have been thought of as 
propositions that "neither need nor 
admit of proof". However, perceptions 
about which propositions need proof 
have changed through history. To take 
a famous example, Euclid considered 
his fifth postulate to be an axiom. In 
two dimensional geometry the fifth 
postulate says that given a line L and 
point p not on L, there exists exactly 
one line through p that does not 
intersect L. But mathematicians after 
Euclid thought that this needed proof, 
and many attempts were made to 
prove this from Euclid’s other axioms. 
With the recognition of non-Euclidean 
geometries in the nineteenth century, 
it became clear that the fifth postulate 
was indeed independent of Euclid’s 
other axioms; that is, it cannot be 
proved from his other axioms.

Poincaré Disk

It is instructive to examine in some detail 
how the existence of non-Euclidean 
geometries shows the independence of 
the fifth postulate. One of the simplest 
models of a geometry where all of 
Euclid’s postulates except the fifth one 
hold is known as the Poincaré Disk. Our 
"space", the Poincaré Disk, consists of 
all points that lie in the interior of some 
fixed circle C – i.e. we omit the points 

Figure 1: The Poincaré disk consists 
of the Points in the interior of the 
circle C.  The "line through P and 
Q" and the "line through A and B" 
are shown.  Note that the Points on 
the circle C represent infinity, so 
neither "line" has any endpoints.

The search for new 
Mathematical axioms
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Or to put it another way, if all you know about points and lines 
are the first four axioms, then you do not know enough to be 
able to distinguish between the usual "flat" two dimensional 
space and the Poincaré Disk, and the existence of these two 
interpretations shows that the fifth postulate is independent 
of the other four because it holds in the usual interpretation 
while failing in the alternative one1.              

The above discussion raises an important point about the 
language in which mathematical propositions are expressed. 
This language has varied from time to time. For Euclid this 
language was Greek. No matter what this language is, it always 
contains some primitive undefined terms. The mathematician 
who uses these terms may have a certain picture of what they 
represent in his or her mind, but while proving a theorem only 
the information that is declared in the axioms may be used. 
The language of modern mathematics is an extremely precise 
and wholly artificial language in which only a small number of 
primitive terms occur. In fact, apart from some logical terms 
connected with reasoning in general, only one primitive term 
occurs: the notion of a set2. The rules for forming a meaningful 
sentence in this language are so precise, the axioms governing 
the usage of the primitive terms are so easy to list, and the 
rules of inference sufficiently well-defined, that it possible for 
a computer program to recognize when a certain string of 
symbols is a meaningful sentence in this language, and when 
a sequence of such sentences constitutes a proof. Needless 
to say, mathematicians do not think in terms of this artificial 
language, but all theorems and proofs can, at least in principle, 
be translated into it.

Notion of a Set

Why did modern mathematics evolve such an artificial 
language and what is the notion of a set? This is a complex 
story, but a very brief outline is as follows. In the nineteenth 
century several mathematicians felt a need for greater rigour 
in dealing with the concepts of calculus such as the concept of 
a limit, which till then were based on geometric intuition. This 
led them to redefine these notions in terms of just real numbers 
and operations performed on them. Then real numbers were 
reduced to the rational numbers, which in turn were reduced 
to the familiar natural numbers of arithmetic. This trend went 
hand in hand with two other trends. The first was an expansion 
in the sense of the term "function". Functions, which had 
initially denoted certain mathematical expressions, came to 
denote arbitrary correspondences. This led Frege to think of 
predicates and relations as functions that map objects to truth 
values. For example, he thought of the relation "is the father 
of" as a function whose arguments are a pair of objects x and 
y and it returns the value "true" if x is the father of y and the 
value "false" otherwise. Other functions could then be defined 
that took such functions as their arguments, and this process 
could be iterated. He built an artificial language using such 
functions and showed that this language was very useful for 

formalizing mathematical proofs. The second closely related 
trend was the study of arbitrary collections or sets of objects 
(usually mathematical objects such as real numbers), without 
any fundamental distinction being made between finite and 
infinite collections. This was initiated by Cantor, who showed 
that there were different kinds  of infinite collections – some 
infinities were much bigger than others.

This trend towards studying arbitrary functions and sets 
eventually led to some paradoxes that resulted when certain 
sets with self-referential definitions were considered. To give a 
simple illustration of these paradoxes, suppose that there is a 
town in which there is a barber, who is male, and he shaves all 
and only those men in the town who do not shave themselves. 
Does the barber shave himself? By our hypothesis he shaves 
himself if and only if he does not. So such a barber simply 
cannot exist. Similarly it was realized that sets with such self-
referential definitions cannot exist either, and axioms specifying 
exactly what kinds of sets exist were drawn up. Thus was born 
the axiom system known as ZFC, which is expressed in the 
artificial language referred to above. The axioms of ZFC provide 
all the information about sets that is relevant to mathematics, 
including information about what sets exist. All theorems 
proved by mathematicians today can be translated into the 
language of ZFC and proved from its axioms3.

ZFC Axiom System

But is it the case that the axioms of ZFC can, at least in 
principle, be used to settle all mathematical questions? The 
answer is no, and in fact this answer is not unique to ZFC. 
In the 1930 Gödel proved that there there are propositions 
in the language of ZFC that are independent of the axioms 
of ZFC. That is, there are sentences in the language of ZFC 
that stand in the same relation to its axioms as Euclid’s fifth 
postulate stands in relation to his other four – these sentences 
can neither be proved nor disproved using the axioms of ZFC. 
So for any one of these independent sentences, there exist 
two different interpretations of the term "set", one in which 
the sentence is true and another one in which the sentence 
is false, even though all the axioms of ZFC hold under both 
interpretations. All of the techniques of modern mathematics 
can be implemented with ZFC; therefore these independent 
sentences express mathematical questions that cannot be 
resolved using any mathematical technique, unless of course, 
one is willing to accept new axioms. It is worth noting that 
this predicament is not unique to ZFC or to the concept of 
"set". Gödel showed that for any axiom system that is powerful 
enough for the development of modern mathematics and 
whose axioms are simple to list, there will be sentences in the 
language of that axiom system that are independent of it, and 
this is regardless of the primitive concepts used4.

A large part of modern set theory is devoted to constructing 
various different interpretations of the term "set". Just as the 

1.	 For more on non-Euclidean geometries see [1]. You may 
also wish to google "Escher’s Circle Limit ".

 2.	 Technically, it is the relation of set membership.

3.	 Consult [2] for the original sources relating to the 
development of the artificial language in which ZFC is 
expressed, for the development of the set concept, and 
for the evolution of the axioms of ZFC. 

4.    	 Gödel’s original papers are in [2].
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interpretations of the terms "point" and "line" were carefully 
constructed in the Poincaré Disk example to ensure that 
Euclid’s first four postulates were true, these interpretations 
of "set" are carefully constructed to ensure that the axioms 
of ZFC are all true. Such an interpretation is known as a 
model of ZFC. Now, given a mathematical sentence, if there 
is a model of ZFC in which that sentence is true and also a 
model where it is false, then the question of whether that 
sentence is true cannot be answered by usual mathematical 
techniques. One of the aims of investigating models of ZFC 
is this kind of delimitation of possibilities. It is worth noting 
here that these models are constructed using tools available 
in ZFC (this is similar to the Poincaré Disk being defined using 
Euclidean circles)5. So this is an exploration of the limits of 
mathematics from within itself. Another aim of this study is to 
discover new possible axioms. The traditional view of axioms 
was that they have to be self-evident. However, we may also 
discover sentences independent of ZFC, which when added 
as new axioms give such a coherent and appealing picture of 
some class of mathematical structures that we are tempted 
to enlarge ZFC in that direction. In fact, two distinct types of 
such sentences have been recognized over the last several 
decades of research. The first class may be called "minimality 
hypotheses". Very roughly, they say that the universe of sets 
is as thin as possible. The picture they present of certain 
infinite combinatorial structures is one of "non—structure", 
meaning that they imply that such combinatorial structures 
are disparate and impossible to classify. The other class 
of sentences are collectively known as "forcing axioms". 
Very roughly, they say that the universe of sets is as wide as 
possible. They tend to imply that a structure theory exists for 
several classes of combinatorial structures, meaning that the 
objects in these classes are not so diverse and must belong 
to one of a small number of types6. Another aim of studying 
models of ZFC is to discover new theorems of ZFC. Sometimes 
showing that a statement is independent of ZFC can suggest 
candidates for new theorems and can provide hints as to what 
techniques to use for proving them. In [4] Shelah calls this the 
"Rubble Removal Thesis": after the independent statements 
are cleared away, we may be left with unexpected theorems.

In my own work, I have made small contributions to this on-
going study of models of ZFC. To illustrate, in [5] a limit on 
possibilities is set by showing that the existence of a certain 
set of real numbers is independent of ZFC. In [6], I have studied 
the consequences of some forcing axioms. In [7], I prove a 
theorem of ZFC, which could have been discovered classically, 
but was found only after several independence results in its 
vicinity were proved, and its proof uses techniques that are 
reminiscent of independence proofs.

References

1.	 Coxeter, H. S. M., "Non—Euclidean geometry", 
Mathematical Association of America: Washington, DC 
(1998).

2.	 Van Heijenoort, J. (ed.), "From Frege to Gödel", Harvard 
University Press: Cambridge, MA (2002).

3.	 Moore, J. T., "The proper forcing axiom", Proceedings of the 
International Congress of  Mathematicians., Vol II, pp. 3—29 
(2010).

4.	 Shelah S., "Logical dreams", Bull. Amer. Math. Soc. (N.S.), 
Vol 40, pp. 203—228 (2003).

5.	 Raghavan D., "A model with no strongly separable almost 
disjoint families", Israel J. Math., Vol 189, pp. 39—53 
(2012).

6.	 Raghavan D., "P-ideal dichotomy and weak squares", J. 
Symbolic Logic, to appear.

7.	 Raghavan D., "There is a Van Douwen mad family", Trans. 
Amer. Math. Soc., Vol 362, pp. 5879—5891 (2010).

5.    	 There is a technical issue that is being swept under the 
rug here. Strictly speaking, it is not possible to construct 
a model of ZFC within ZFC, but only models of arbitrarily 
large finite fragments of it. This turns out to be good 
enough.

6.	 For more on forcing axioms and structure theorems for 
classes of combinatorial structures, see [3].




