
for Blind Image
De-convolution

Numerical Methods

Developing New Mathematical Models 
and Techniques for Recovering 
Motion-Blurred Photographs

by Ji Hui

Blind Image
De-convolution

Numerical Methods

Developing New Mathematical Models 
and Techniques for Recovering 
Motion-Blurred Photographs

by Ji Hui

   C o v e r  S t o r y
31

 INNOVATION • Vol. 13 No. 2, 2014



  espite all the advances in digital photography, motion  
  blurring is still one of the most common causes of  
  blurred pictures caused by camera movement during 
exposure time. A motion-blurred picture is usually modeled by 

D
f=p* g+n,

where * denotes the discrete convolution operator, f denotes the 
blurry picture, g denotes the sharp one, n denotes image noise, 
and p denotes the blur kernel determined by the relative motion 
between the camera and the scene. Modern cameras address this 
issue by using image stabilization, which controls mechanical 
actuators that shift the sensor or lens element during the exposure 
to compensate for motion of the camera and thereby reduce mage 
degradation. Unfortunately, image stabilization only addresses 
very modest camera shake.
 Motion de-blurring is about how to recover sharp image g 
from a blurred image f. Since the camera motion can be arbitrary, 
the blur kernel p cannot be determined by some pre-process. In 
mathematical term, such a de-blurring process is often called 
“blind de-convolution”, which simultaneously estimates both the 
sharp image g and the blur kernel p from a blurry image f. Blind 
image de-convolution is a challenging ill-posed bi-linear inverse 
problem. Clearly, there exist an infinite number of solutions. One 
obnoxious solution is {p:=δ;g :=f }, where δ is the so-called 
Dirac operator. The result corresponding to such a trivial solution 
essentially is doing nothing on the given blurred image f. Thus, 
one fundamental question to answer in blind image de-blurring is 
how to mathematically characterize the so-called “sharp image”. In 
a variational approach, such a question becomes how to design a 
function such that it achieves minimum value at a clear image with 
sharp edges. In recent years, the author and his collaborators have 
developed a framework for resolving this challenging problem, 
together with several new mathematical models and computational 
techniques. The basic idea is to model both blur kernel and sharp 
images as some signals that are compressible under some transform 
domain.
 A signal g is compressible in some transform means that there 
exists a system such that the signal g can be described by the 
linear combination of only a few atoms of this system. In other 
words, the signal g can be sparsely approximated by the system:

g = Dj
n
∑ c j

where W={Dj} denotes the system and c={cj} denotes a sparse 
coefficient vector with most elements being zeros or close to 
zeros. Then, given a signal g and its sparsifying system W, one 
may estimate its associated sparse coefficient vector c via solving 
an l1-norm relating optimization problem [2]:

The system W usually is a redundant system as it provides higher 
sparse degree of c. One often-used system for sparsifying images 
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 The wavelet tight frame-based blind image de-convolution 
methods [3,4] can effectively remove motion blurring from 
photography when the blurring effect of the input is uniform 
over the whole image. However, such an assumption may break 

f = Kg + n

down in certain configurations. For example, when the camera 
shake is dominated by rotation or the scene has significantly 
varying depths, the blurring is spatially varying such that different 
regions have different blurring effect. Mathematically speaking, 
such a blurring process is a spatially varying process which can 
be expressed as

W ={ψ j (2
k ⋅−ℓ)}, j =1,…,L.

The wavelet tight frame is the extension of an orthonormal basis 
to the case of redundant system, which keeps the so-called perfect 
reconstruction property:

Interested readers are referred to [1] for more details.
 Built upon the concepts of wavelet tight frames and sparse 
approximation via l1-norm relating optimization, the author and 
his collaborators developed in [3] a powerful sparse approximation 
based framework for blind image de-blurring:

is the so-called wavelet tight frame [1]. A wavelet system refers 
to a system generated by the translates and dilations of a few 
mother wavelet functions:
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where K is a banded matrix. For spatially invariant case, each 
row of K corresponds to the same low-pass filter up to a spatial 
shift while each row of K may correspond to a different low-pass 
filter for spatially invariant blurring process. In [6], a two-stage 
approach is proposed to solve such a spatially varying blind de-
blurring problem. The basic idea is to approximate the spatially 
varying blurring process by a piece-wise spatially invariant blurring 
process, followed by a PCA-based interpolation process to derive 
the whole matrix K. The key component in the proposed two-
stage framework is a non-blind image de-convolution technique 
[6], which is robust to kernel error, which is unavoidable in 
spatially varying blind de-blurring. The basic idea of robust image 
de-convolution method proposed in [7] is to simultaneously 
estimate three components: (1) sharp image, (2) the distortion of 
image gradients, and (3) the artifacts caused by kernel error. All 
three components can be sparsely approximated under different 
transforms, namely, the sharp image is sparse in wavelet tight 
frame, the distortion of image gradients is sparse in space, and 
the artifacts are sparse in local Cosine transform. 

where Φ denotes the sparse approximation based regularization 
for the kernel p, and Ψ denotes the sparse approximation based 
regularization for the sharp image g. The optimization above can 
be solved via the alternating iteration scheme, which alternatingly 
estimates the kernel p and the sharp image g via solving an l1-
norm relating optimization problem. In [2], the curvelet is used 
for sparsely approximating the kernel owing to its curvy support, 
and wavelet tight frame is used for sparsely approximating the 
image. In a sequent work [4], the image and the kernel are both 
sparsely approximated by the wavelet tight frame. In addition, a 
new analysis sparse model (e.g. Φ(p)=||WT p||1) is used for better 
performance. The approach developed in [3, 4] can effectively 
restore a large class of blurred images owing to camera shake. 
However, it is observed in [5] that the result obtained via using 
the l1-norm based sparse approximation is biased toward slightly 
blurred result. In other words, the results might still look slightly 
blurry. Thus, a new sparsity-based prior is proposed in [4] which 
considers the ratio l1/l2 as the energy function for characterizing 
images with sharp edges.
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