Group Theory

1. Let G be a cyclic group of finite order and let A be a subgroup of G. Prove that G is cyclic.

2. Let G be a cyclic group of order n. Prove that G is isomorphic to \mathbb{Z}_n.

4. Let p be a prime and let G be a group of order p^2. Prove that G is abelian.

5. Let p be a prime and let P be a group of order p^n. Prove that the order of $Z(P)$ is at least p.

6. Determine all the subgroups of $\mathbb{Z}_4 \times \mathbb{Z}_4$. Justify your answer.

7. Let G be a group of order n. Prove that G is isomorphic to a subgroup of S_n.

8. Let A be a subgroup of index p of a finite group G, where p is the smallest prime divisor of $|G|$. Prove that A is a normal subgroup of G.

9. Let D_n be the dihedral group of order n. Find the center and all the conjugacy classes of D_{10}.

10. Let x and y be two elements of order 2 of a group G. Prove that the subgroup $\langle x, y \rangle$ is either abelian or dihedral.

11. Let σ be an even permutation. Give necessary and sufficient conditions of the cycle decomposition of σ such that $\text{Cl}_{S_n}(\sigma) = \text{Cl}_{A_n}(\sigma)$. Justify your answer.

12. Let $p > 3$ be a prime. Suppose further that 3 is not a divisor of $p - 1$. Prove that a group of order $3p$ is cyclic.
Ring Theory

1. Let R be a commutative ring with identity and let M be an ideal of R. Prove that M be a maximal ideal if and only if R/M is a field.

2. Let R be a finite integral domain with identity. Prove that R is a field.

3. Let R be a principal ideal domain with identity and let I and J be two distinct prime ideals of R. Prove that $1 \in <I, J>$.

4. Determine whether $\mathbb{Z}[x]$ is a principal ideal domain. Justify your answer.

5. Determine whether $\mathbb{Z}[\sqrt{-5}]$ is a unique factorization domain. Justify your answer.

6. Prove that the characteristic of an integral domain is either 0 or p, where p is a prime.

7. Let D be an integral domain and let F be its quotient field. Prove that $f(x) \in D[x]$ is irreducible in $D[x]$ if and only if it is irreducible in $F[x]$.

8. Let M be a finitely generated module of \mathbb{Z}. Prove that M is isomorphic to a direct sum of cyclic \mathbb{Z}-modules.

9. Let M be a simple module of a ring R and let

$$\chi : M \to M$$

be a module homomorphism. Prove that if $\chi \neq 0$, then χ is an isomorphism.

10. Let R be a unique factorization domain. Prove that $x \in R$ is irreducible if and only if x is prime.

11. Let R be a unique factorization domain. Prove that $R[x]$ is a unique factorization domain.

12. Construct a ring R such that $\text{GCD}(x, y)$ does not exist for some $x, y \in R \setminus \{0\}$. Justify your answer.
Field Theory

1. Let p be a prime. Prove that \mathbb{Z}_p is a field. For each n, construct a field of p^n elements.

2. Let E and F be two fields of order p^n. Prove that E and F are isomorphic to each other.

3. Let F be a finite field and let $\tau \in F$. Prove that $\tau = a^2 + b^2$, for some $a, b \in F$.

4. Let p and q be two different primes. Determine whether there exists a field isomorphism from $\mathbb{Q}(\sqrt{p})$ to $\mathbb{Q}(\sqrt{q})$. Justify your answer.

5. Let E/F be a field extension and let $\tau \in E$. Prove that $F[\tau] = F(\tau)$ if and only if τ is algebraic over F.

6. Let F be a field and let $f(x) \in F[x]$ be an irreducible polynomial. Prove that there exists a field extension E/F such that $f(x)$ can be factorized into product of linear factors in E.

7. Let E be the set $\{ \tau \in \mathbb{C} : \tau$ is algebraic over $\mathbb{Q} \}$. Prove that E is countable.

8. Determine whether $\cos \pi/n$ is algebraic over \mathbb{Q}. Justify your answer.

9. Let $w_n = e^{2\pi i/n}$. Determine $[\mathbb{Q}(w_n) : \mathbb{Q}]$. Justify your answer.

10. Let E/F be a field extension. Suppose that $[F(x) : F]$ is odd. Show that $[F(x) : F] = [F(x^2) : F]$.

11. Let p be a prime and let F be a finite field of p^n elements. Suppose that $F^\times = < x >$. Let χ be a field automorphism of F. Prove that $\chi(x) = x^{p^r}$ for some r.

12. Determine the set of field automorphisms of $\mathbb{Q}(\sqrt{p})$, where p is a prime. Justify your answer.